Adaptive Classification by Hybrid EKF with Truncated Filtering: Brain Computer Interfacing
نویسندگان
چکیده
This paper proposes a robust algorithm for adaptive modelling of EEG signal classification using a modified Extended Kalman Filter (EKF). This modified EKF combines Radial Basis functions (RBF) and Autoregressive (AR) modeling and obtains better classification performance by truncating the filtering distribution when new observations are very informative.
منابع مشابه
Bayesian inference for an adaptive Ordered Probit model: An application to Brain Computer Interfacing
This paper proposes an algorithm for adaptive, sequential classification in systems with unknown labeling errors, focusing on the biomedical application of Brain Computer Interfacing (BCI). The method is shown to be robust in the presence of label and sensor noise. We focus on the inference and prediction of target labels under a nonlinear and non-Gaussian model. In order to handle missing or e...
متن کاملAdaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal
Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملOn-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کامل